SIMPLEXWISE LINEAR UNTANGLING

DAVID W. HENDERSON

ABSTRACT. In this paper we show how to canonically untangle simplexwise linear spanning arcs of a convex 2-cell. Specifically, we show that the space of such arcs is contractible. The main step in the contraction is a flow along the gradient field of an energy function. A 3-dimensional version of this result would imply the Smale Conjecture—Hatcher Theorem.

0. Introduction. We will show how to canonically untangle simplexwise linear arcs in the plane. Specifically, let K^2 be a triangulated convex 2-cell in \mathbb{R}^2 . Let v and w be any two points that lie in the interior of distinct 1-simplexes in the boundary of K^2 . Let J_k be the (straight) segment joining v to w and subdivided into k subintervals. Let $\mathcal{F}(J_k, K^2)$ denote the space of all maps $f: J_k \to K^2$, which are simplexwise linear (i.e. linear on each 1-simplex of J_k) and are such that

$$f(v) = v$$
, $f(w) = w$, and $f(J_k) \cap \partial K^2 = \{v\} \cup \{w\}$,

where ϑ denotes the boundary. Since $f \in \mathcal{F}(J_k, K^2)$ is determined by its values on the vertices $v_1, v_2, \ldots, v_{k-1}$ of I_k , we can identify $\mathcal{F}(J_k, I^2)$ with an (open) subset of $(\mathbf{R}^2)^{k-1}$, where f is identified with the (k-1)-tuple $(f(v_1), f(v_2), \ldots, f(v_{k-1}))$. We shall prove

THEOREM. $\mathcal{F}(J_k, K^2)$ is contractible.

This is related to the main result of [BCH] which proves that the space of simplexwise linear homeomorphisms of K^2 , rel ∂K^2 , is contractible. See [BCH] and [CHHS] for a discussion of history, results and questions concerning spaces of simplexwise maps. The main interest in the Theorem and its proof is that it gives a method for attempting a proof of the 3-dimensional version:

CONJECTURE. If A is a polyhedral spanning arc of I^3 and $\mathcal{F}(A, I^3)$ is the space of simplexwise linear unknotted embeddings of A into I^3 , rel ∂I^3 , then $\mathcal{F}(A, I^3)$ is contractible.

See §6 for a discussion of this conjecture. According to a result in [Hen], this conjecture, if true, would imply the analogous result in the smooth category. This later result is known to be equivalent to the well-known Smale Conjecture, recently proved by A. Hatcher (see [Hat2]).

Received by the editors March 31, 1985 and, in revised form, November 4, 1985.

The author was partially supported by NSF Grant MCS 83-01865. Early stages of this research were done while the author was a visiting faculty member at Birzeit University, West Bank.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 58D10, 57Q35; Secondary 578M99.

1. Reduction of the Theorem. If P is a projective transformation of the extended plane which maps at most one point of K to infinity and if $f \in \mathcal{J}(J_k, K^2)$, then define $f_P: P(J_k) \to P(K)$ by setting $f_P(z) = P \circ f \circ P^{-1}(z)$ for z a vertex of J_k , and extending linearly. Note that $f_P \in \mathcal{F}(P(J_k), P(K^2))$ and $f_P(P(J_k)) = P \circ f \circ P^{-1}(P(J_k))$, but $f_P \neq P \circ f \circ P^{-1}$, since P is not linear on simplexes. Now pick a projective transformation P so that $P(J_k) = [0, k] \times \{0\}$ and so that the P-images of the 1-simplexes containing the endpoints of J_k are vertical and contain the segments $\{0\} \times [-1, 1]$ and $\{k\} \times [-1, 1]$ ($\subset \mathbb{R}^1 \times \mathbb{R}^1$) (see Figure 1). Note that if v and w belong to adjacent edges of ∂K , then P will send the vertex between v and v to v.

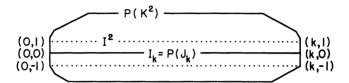


FIGURE 1

(1.1) LEMMA. $\mathcal{F}(J_k,K^2)$ is homeomorphic to $\mathcal{F}(P(J_k),P(K^2))$ which contracts within itself into the subspace $\mathcal{F}\equiv\mathcal{F}(I_k,I^2)$, where $I_k\equiv P(J_k)=[0,k]\times\{0\}$ and $I^2\equiv[0,k]\times[-1,1]$.

PROOF. It is easy to check that $f \to f_P$ is a homeomorphism with inverse $g \to g_{P^{-1}}$. The contraction is accomplished by composing each function in $\mathcal{F}(P(J_k), P(K^2))$ with the homotopy of $\mathbb{R}^1 \times \mathbb{R}^1$, which takes

$$(x, y) \mapsto (x, (1 - t + td)y)$$

at time t for $d = \max\{||y|| | y \text{ is the } y\text{-coordinate of some point in } P(K^2)\}^{-1}$. \square In the remainder of the paper we will prove the Theorem by showing that $\mathscr{T} \equiv \mathscr{T}(I_k, I^2)$ is contractible.

2. The contraction of \mathcal{F} . In order to contract \mathcal{F} it is sufficient to show that each compact subset $\mathscr{C} \subset \mathcal{F}$ can be contracted in \mathcal{F} . For $f \in \mathscr{C}$, we proceed by straightening out $f(I_k)$ one vertex at a time. That is, if

$$\mathscr{T}_{j} \equiv \{ f \in \mathscr{T} \mid f(i) = i \text{ for } i = 1, 2, \dots, j \},$$

then we homotope $\mathscr C$ into $\mathscr T_1$ and then homotope (in $\mathscr T_1$) the (compact) image of $\mathscr C$ into $\mathscr T_2$, and so forth, until we reach $\mathscr T_{k-1}$, which consists only of the identity map. The homotopy of a compact subset of $\mathscr T_i$ (in $\mathscr T_i$) is accomplished in two steps:

(2.1) LEMMA. Any compact subset of \mathcal{T}_j is homotopic (in \mathcal{T}_j) to a (compact) subset of

$$\mathscr{T}_{i}^{*} \equiv \left\{ f \in \mathscr{T}_{i} \middle| \pi_{x} f(j+1) = j+1 \right\},\,$$

where π_x is the projection of $\mathbf{R}^1 \times \mathbf{R}^1$ onto $\mathbf{R}^1 \times \{0\}$.

(2.2) LEMMA. Any compact subset of \mathcal{T}_j^* is homotopic (in \mathcal{T}_j^*) to a (compact) subset of \mathcal{T}_{j+1} .

PROOF OF LEMMA (2.1) [AND LEMMA (2.2)]. The construction of the homotopy is very similar in both steps: In the main text the homotopy of (2.1) will be detailed [the changes necessary for (2.2) will be indicated in square brackets]. The homotopy is defined to be horizontal [vertical]; i.e. $\pi_y f_t(i) [\pi_x f_t(i)]$ will be constant. With these restrictions the homotopy is defined as the flow along the gradient vector field of an energy function $E: \mathcal{T}_j \to [0, \infty)$ [$E: \mathcal{T}_j^* \to [0, \infty)$]. That is, the homotopy $f \mapsto f_t$ is defined by letting f_t be the solution of the system of equations

$$\frac{d}{dt}f_t(i) = \frac{-\partial}{\partial x(i)}E(f_t) \quad \left[= \frac{-\partial}{\partial y(i)}E(f_t) \right], \quad f_0 = f,$$

where $f_t(i) = (x(i), y(i))$. Part of E is a "spring energy", S, acting as if there were a spring pulling f(j+1) to where it is supposed to go. That is, for (2.1), define S on \mathcal{T}_j by setting $S(f) = \|\{j+1\} - \pi_x f(j+1)\|^2$. [For (2.2), define S on \mathcal{T}_j^* by setting $S(f) = \|\{j+1\} - f(j+1)\|^2$.] If this were all of E, then in most cases during the flow one of the vertices $f_t(i)$ would intersect the boundary, ∂I^2 , of I^2 or some $f_t([r,r+1])$ for $r \neq i-1,i$. To prevent this from happening, some "bumper energies", B, are added, enabling points and segments to be kept apart. In particular, let $h: (0,\infty) \to [0,\infty)$ be defined by

$$h(x) = \begin{cases} \frac{A}{x} \exp\left(\frac{-1}{d-x}\right) & \text{for } 0 < x < d, \\ 0 & \text{for } d \le x, \end{cases}$$

which is a monotone decreasing C^{∞} function depending on the two parameters A and d, which will be defined in §4. Then, if p is a point in the interior of I^2 and Q is ∂I^2 or a line segment disjoint from p, define $B(p,Q) \equiv h(D(p,Q))$, where $D(p,Q) \equiv \inf\{||p-q|||q \in Q\}$ is the distance from p to Q. Notice that B(p,Q) is zero if p and Q are further apart than d and that, as p approaches Q, $B(p,Q) \to \infty$. We can now define

$$E(f) \equiv S(f) + \sum B(p,Q),$$

where the sum is over all p = f(i) and $Q = \{\partial I^2 \text{ or } f([r,r+1]) \text{ for } r \neq i-1,i\}$. For $f \in \mathcal{F}_j$, the first j vertices of I_k are fixed and thus we can represent $f = (f(j+1), f(j+2), \ldots, f(k+1)) \in (\mathbf{R}^2)^{k-1-j}$ and \mathcal{F}_j is an open subset of $(\mathbf{R}^2)^{k-1-j}$ and \mathcal{F}_j^* is an open subset of $(\{j+1\} \times \mathbf{R}) \times (\mathbf{R}^2)^{k-2-j}$. Define f_i to be the unique solution of the system of differential equations

$$\frac{d}{dt}f_t(i) = \frac{-\partial}{\partial x(i)}E(f_t), \quad f_0 = f \quad \left[\frac{d}{dt}f_t(i) = \frac{-\partial}{\partial y(i)}E(f_t), f_0 = f\right]$$

for $j+1 \le i \le k-1$. The theory of ordinary differential equations applies because in §3 we will show that $\partial E/\partial x(i)$ [$\partial E/\partial y(i)$] are Lipschitz functions of $f \in \mathcal{T}_j$ [\mathcal{T}_j^*]. In order for f_t to move outside of \mathcal{T}_j [\mathcal{T}_j^*] it is necessary that either f_t fails to be one-to-one or $f_t(i)$ intersects ∂I^2 for some $i=j+1, j+2, \ldots, k-1$, but in either case some $B(f_t(i), Q)$ will be infinite, which is impossible since the energy $E(f_t)$ starts finite and, for z=x [z=y],

$$\frac{d}{dt}E(f_t) = \nabla E(f_t) \cdot \frac{d}{dt}f_t = -\sum_{i=j+1}^{k-1} \left\| \frac{\partial}{\partial z(i)}E(f_t) \right\|^2 < 0.$$

Thus, if f is in the compact $\mathscr{C} \subset \mathscr{T}_j$ $[\mathscr{T}_j^*]$, then f_t stays in the compact $E^{-1}E(\mathscr{C}) \subset \mathscr{T}_j$ $[\mathscr{T}_j^*]$. It follows from the standard theory of differential equations (see, for example, $[\mathbf{Spi}, \mathrm{pp.}\ 194-200]$ that $(f, t) \to f_t$ defines a continuous flow on \mathscr{T}_j $[\mathscr{T}_j^*]$ for $t \in [0, \infty)$. Let

$$\nabla_z E \equiv \left(\frac{\partial}{\partial z(j+1)}E, \dots, \frac{\partial}{\partial z(k-1)}\right) \quad \text{for } z = x \ [z = y].$$

In §5 we will show

(2.3) LEMMA. $S(f) \neq 0$ implies that $\nabla_z E(f) \neq 0$ for z = x [z = y].

Then we conclude that, for all $S(f_t) > \varepsilon$, there is a δ such that

$$\frac{d}{dt}E(f_t) = \nabla_z E(f_t) \cdot \frac{d}{dt}f_t = -\|\nabla_z E(f_t)\|^2 < \delta < 0,$$

and thus $\lim_{t\to\infty} S(f_t) = 0$, since $E(f_t)$ is bounded below by 0. Now, we do not know that this flow can be extended to $t=\infty$; however, eventually $f_t(j+1)$ will be so close to its destination that we can stop the flow (for all $j+1 \le i \le k-1$ simultaneously) and continue the homotopy by moving only f(j+1) along the straight line to its destination, $(j+1,\pi_y f(j+1))$ [(j+1,0)]. This finishes the proof of (2.1) [(2.2)]. \square

3. $\partial E/\partial x(i)$ and $\partial E/\partial x(i)$ are Lipschitz functions. Since

$$\frac{\partial}{\partial z}E(f) = \frac{\partial}{\partial z}S(f) + \sum h'(D(p,Q))\frac{\partial}{\partial z}D(p,Q)$$

for z = x(i) [y(i)], it suffices to show that $(\partial/\partial z)D(p,Q)$ is Lipschitz for p = f(s) and $Q = \{\partial I^2 \text{ or } f([r,r+1]), r \neq s-1,s\}$. We see that if p = f(s) and Q = f([r,r+1]), then

$$\nabla_{i}D \equiv \left(\frac{\partial}{\partial x(i)}D(p,Q), \frac{\partial}{\partial x(i)}D(p,Q)\right)$$

is nonzero only if i = s, r or r + 1. We use the fact that the gradient, $\nabla_i D$, is in the direction that f(i) must be moved to obtain the maximum rate of increase of D and that that rate is the magnitude of $\nabla_i D$. Let q be the closest point of Q to p. We have three cases: q = f(r), q = f(r + 1), or $q \in f((r, r + 1))$.

(i) q = f(r). Then D(p, Q) = ||f(s) - f(r)|| and

$$\nabla_s D = \frac{f(s) - f(r)}{\|f(s) - f(r)\|} = -\nabla_r D$$
 and $\nabla_{r+1} D = 0$.

(ii) q = f(r+1). Then D(p,Q) = ||f(s) - f(r+1)|| and $\nabla_s D = \frac{f(s) - f(r+1)}{||f(s) - f(r+1)||} = -\nabla_{r+1} D$ and $\nabla_r D = 0$.

(iii) $q \in f((r, r + 1))$. Then, if μ is the unit vector perpendicular to Q and pointing towards p, we have

$$\nabla_{s}D = \mu, \quad \nabla_{r}D = \frac{-\|q - f(r+1)\|}{\|f(r) - f(r+1)\|} \cdot \mu, \quad \text{and}$$
$$\nabla_{r+1}D = \frac{-\|q - f(r)\|}{\|f(r) - f(r+1)\|} \cdot \mu.$$

We notice that these gradients are continuous, but not differentiable. But restricted to each of the three pieces each gradient is differentiable and bounded (in \mathcal{T}). Thus these gradients are Lipschitz.

- **4.** The constants c, A, d, and the orderings < and o. Throughout this section \mathscr{C} is some compact subset of \mathscr{T}_i [\mathscr{T}_i^*]. Notice that the homotopy of \mathscr{T}_i [\mathscr{T}_i^*] into \mathscr{T}_i^* $[\mathscr{T}_{j+1}]$ will be contained in the set \mathscr{C}^{\sim} , $\mathscr{C} \subset \mathscr{C}^{\sim} \subset \mathscr{T}_{j}$ $[\mathscr{T}_{j}^{*}]$, where we set $g \in \mathscr{C}^{\sim}$ iff there is an $f \in \mathscr{C}$ such that
 - (a) $\pi_{v} f(t) = \pi_{v} g(t) [\pi_{v}]$ for all $t \in I_{k}$.
- (b) for all $t, t' \in I_k$, $\pi_v f(t) = \pi_v(t') [\pi_x]$ implies that $\{\pi_x f(t), \pi_x f(t')\}$ has the same order as $\{\pi_x g(t), \pi_x g(t')\} [\pi_y]$.
 - (c) $E(g) \leq E(\mathscr{C}) \equiv \text{Max}\{E(f') | f' \in \mathscr{C}\}.$
- (4.1) LEMMA. There is a constant $c \equiv c(\mathscr{C}) < \frac{1}{4}$ such that, for all $1 \le r$, $s \le k-1$ and $g \in \mathscr{C}^{\sim}$, whenever the horizontal [vertical] line through g(s) intersects g([r-1,r]) and g([r,r+1]) on opposite sides of g(s), then $\|\pi_v g(s) - \pi_v g(r)\| \ge c$ $[\|\pi_{\mathbf{y}}g(s)-\pi_{\mathbf{y}}g(r)\|\geqslant c].$

PROOF. We shall prove (4.1) only for the case of \mathscr{T}_j and leave to the reader the modifications necessary for \mathscr{T}_i^* . Suppose that $\{g_i\}\subset\mathscr{C}^\sim$ such that the horizontal line through $g_i(s)$ intersects $g_i([r-1,r])$ at p_i and intersects $g_i([r,r+1])$ at q_i on opposite sides of g(s) and suppose that

$$\|\pi_{v}g_{i}(s)-\pi_{v}g_{i}(r)\|\rightarrow 0.$$

Then, for the corresponding $f_i \in \mathcal{C}$, some subsequence of $\{f_i\}$ will converge to $f \in \mathscr{C}$, since \mathscr{C} is compact. Thus

$$\lim \pi_{y}(p_{i}) = \lim \pi_{y}(q_{i}) = \pi_{y}f(s) = \pi_{y}f(r)$$

and $\pi_{\mathbf{x}}f(s)$ is between $\lim \pi_{\mathbf{x}}(p_i)$ and $\lim \pi_{\mathbf{x}}(q_i)$. Therefore, $f(s) \in f([r-1,r+1])$, which is impossible since $f \in \mathcal{F}$ is one-to-one. \square

- (4.2) DEFINITIONS. (i) Set $b \equiv b(\mathscr{C}) \equiv 2(k/c)^2 > 2k/c > 8k$.
- (ii) Choose $d = d(\mathscr{C}) > 0$ so small that $b^{2k}d \le c/2$.
- (iv) Pick $A = A(\mathscr{C})$ so large that $h(x) \leq E(\mathscr{C})$ implies $\frac{3}{4}d \leq x$.

For what follows, assume that $f \in \mathscr{C}^{\sim}$. We now use the above defined constants to construct several orderings on the segments: $P_r = f([r, r+1]), 0 \le r \le k-1$.

- (4.3) Definition. (a) $P_i < P_r$ iff there is a horizontal [vertical] line in I^2 which first (traveling from left to right [down to up]) intersects P_i and then intersects P_r .
- (b) $P_i < {}_{\mathbf{b}} P_r$ iff $P_i < {}_{\mathbf{a}} P_{r_1} < {}_{\mathbf{a}} P_{r_2} < {}_{\mathbf{a}} \cdots < {}_{\mathbf{a}} P_{r_n} < {}_{\mathbf{a}} P_r$, for some n. (c) $P_i < {}_{\mathbf{c}} P_r$ iff P_r not- $< {}_{\mathbf{b}} P_i$ and the projections $\pi_y P_i [\pi_x P_i]$ and $\pi_y P_r [\pi_x P_r]$ are disjoint and, for all those endpoints, $p \in P_i$ and $q \in P_r$, whose $\pi_v [\pi_x]$ -images are closest, it is true that these images are within d of each other (see (4.2)), and $\pi_{\scriptscriptstyle X} \, p < \pi_{\scriptscriptstyle X} q \, \left[\, \pi_{\scriptscriptstyle V} \right] \, \text{or} \, \left\{ \, \pi_{\scriptscriptstyle V} (\pi_{\scriptscriptstyle V} | \, P_i)^{-1} \pi_{\scriptscriptstyle V} p \, \cap \, \pi_{\scriptscriptstyle X} (\pi_{\scriptscriptstyle V} | \, P_r)^{-1} \pi_{\scriptscriptstyle V} q \, \, \text{is nonempty and} \, \, \pi_{\scriptscriptstyle V} \, p < \pi_{\scriptscriptstyle V} q \, \right\}$ [interchange π_x and π_y].
- (d) $P_i < P_r$ iff $P_i < {\bf e}_0 P_{r_1} < {\bf e}_1 P_{r_2} < {\bf e}_2 \cdots < {\bf e}_{n-1} P_{r_n} < {\bf e}_n P_r$ for some n, where for each i, $\mathbf{e}_i = \mathbf{a}$ or $\mathbf{e}_i = \mathbf{c}$.

Notice that $<_{c}$ is discontinuous with respect to f in the sense that, for some f, $P_{i} <_{c} P_{r}$ but, for some g arbitrarily near f, $P_{r} <_{c} P_{i}$. This is the main source of the g_{f} constructed in §5 being discontinuous if f. We now prove

(4.4) LEMMA. It is not true that $P_r < P_r$. Thus < is a partial ordering on the $\{P_i\}$ for each $f \in \mathscr{C}^{\sim}$.

PROOF. Suppose $P_{r_1} < P_{r_2} < \cdots < P_{r_n}$ are adjacent elements in the ordering, i.e., for each i, there is no P_s such that $P_{r_i} \leqslant P_s \leqslant P_{r_{i-1}}$. It follows that, for each $1 \leqslant i \leqslant n-1$, $P_{r_i} \leqslant \mathbf{e}_i P_{r_{i+1}}$, where $\mathbf{e}_i = \mathbf{a}$ or $\mathbf{e}_i = \mathbf{c}$. Let $p_i \in P_{r_i}$ and $q_{i+1} \in P_{r_{i+1}}$ be such that $\pi_{v_i}(p_i)\pi_{v_i}(q_{i+1})[\pi_{v_i}]$ if $\mathbf{e}_i = \mathbf{a}$, or $\|\pi_{v_i}(p_i)\pi_{v_i}(p_i)\| < a[\pi_{v_i}]$ if $\mathbf{e}_i = \mathbf{c}$. Look at the piecewise-linear path

$$\Lambda \equiv p_1 - q_2 - p_2 - q_3 - p_3 - \cdots - q_{n-1} - p_{n-1} - q_n.$$

At each vertex of Λ whose y [x]-coordinate is a local extremum the path turns towards the right [top] and thus the first (in traversing Λ from p_1 to q_n) point $p \in \Lambda$, if any, which intersects a point on the path before p must be as in Figure 4.

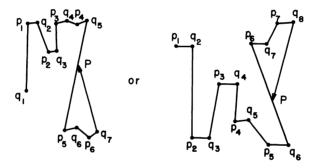


FIGURE 4

If there is such a p then there are four possibilities: For some r < s, (i) $p = [q_r, p_r] \cap [q_s, p_s]$, (ii) $p = [q_r, p_r] \cap [p_s, q_{s+1}]$, (iii) $p = [p_r, q_{r+1}] \cap [q_s, p_s]$, or (iv) $p = [p_r, q_{r+1}] \cap [p_s, q_{s+1}]$. Since $[q_i, p_i] \subset P_{r_i}$, if (i) were true then we would have $P_{r_r} = P_{r_s} \equiv P$ and from Figure 4 we see that p_r , q_r must be in the same order on P_r as q_s , p_s and thus either $p_r \in [q_s, p_s]$ or $q_s \in [p_r, q_r]$. However, both of these are impossible since q_{r+1} is left of [below] p_r and p_{s-1} is right of [above] q_s and p_s is the first point of intersection; thus we conclude that (i) is impossible. If $\mathbf{e}_s = \mathbf{a}$ then (ii) is impossible since p_s and p_{s+1} are assumed to be adjacent in the ordering. If $\mathbf{e}_s = \mathbf{c}$ then (ii) would imply that P_{r_r} is less than $\frac{3}{4}d$ from either P_{r_s} or $P_{r_{s+1}}$, which is not possible by (4.2). Similarly, (iii) is impossible. From Figure 4 we see that at least one of the intervals of Λ containing p must point towards the left [bottom], thus (iv) is impossible. \square

In the construction of g_f in §5, we shall use the above partial ordering of the P_i and a related total ordering induced by a bijection:

- (4.5) Definition. Choose $o: \{0, 1, ..., k-1\} \rightarrow \{0, 1, ..., k-1\}$ to be a one-to-one function so that:
 - (a) If o(r) < o(s), then either $P_r < P_s$, or P_r and P_s are incomparable.

- (b) If no segment $P_i \in f(I_k)$ is between (in the < -partial ordering) two adjacent segments $\{P_{r-1}, P_r\}$, then o(r-1) = o(r) + 1, or o(r) = o(r+1) + 1.
- (c) If $S = \{P_0, P_1, \dots, P_s\}$ is maximal with respect to satisfying (b) for each pair $\{P_r, P_{r+1}\}$, $0 \le r < s$, then o(i) < o(0) iff $P_i < P_r$ for some $r \le s$. (Note that $j \le s$.)

Define $m(i) \equiv \min\{o(i), o(i-1)\}$ and $M(i) \equiv \max\{o(i), o(i-1)\}$. Note that f(i) belongs to P_{i-1} and P_i , and so m(i) gives the first place and M(i) the last place that f(i) is represented in the ordering o.

(4.6) LEMMA. Let $f \in \mathscr{C}^{\sim}$. If $\pi_y f(i)$ is within d of $\pi_y (P_{r-1} \cup P_r) [\pi_x]$ and $\pi_y f(i) [\pi_x]$ is within $c = c(\mathscr{C})$ of $\pi_y f(r) [\pi_x]$, then either $m(i) \geqslant M(r)$ or $M(i) \leqslant m(r)$, with equality only if $i = r \pm 1$.

PROOF. By (4.1) it is impossible that f(i) be between P_r and P_{r-1} . Therefore, either (a) $\pi_y f(i)$ intersects both $\pi_y P_r$ and $\pi_y P_{r-1}$ [π_x], (b) $\pi_y P_r \cap \pi_y P_{r-1} = \pi_y f(r)$ [π_x], or (c) π_{Pr} or $\pi_y P_{r-1}$ is contained in [$\pi_y f(i), \pi_y f(r)$] [π_x]. Thus, by (4.1) and (4.5)(b), we see in each case that neither P_{i-1} nor P_i can come between P_r and P_{r-1} in the >-ordering. Therefore the desired inequalities hold with equality only if $P_r = P_{i-1}$ or $P_{r-1} = P_i$. \square

- **5. Proof of Lemma (2.3).** Preparatory to proving (2.3) at the end of this section, we construct a certain function $g_t \in \mathscr{C}^-$ for each $f \in \mathscr{C}^-$.
 - (5.1) Lemma. If $f \in \mathscr{C}^{\sim}$ and $S(f) \neq 0$, then there is a $g_f \in \mathscr{C}^{\sim}$ such that:
 - (a) $\pi_{v}g_{f}(i) = \pi_{v}f(i)[\pi_{x}], 0 \le i \le k$,
 - (b) for all $0 \le s \le 1$, $sf + (1 s)g_i \in \mathcal{T}_i$ $[\mathcal{T}_i^*]$,
 - (c) $E(g_f) = S(g_f) = 0$,
 - (d) $(f(j+1) g_f(j+1)) \cdot \nabla_{j+1} S(f) > 0$,
- (e) for all $0 \le s \le 1$, $B(sf + (1 s)g_f) < B(f)$, where $B(\cdot)$ ranges over all B = B(p,Q) that appear in the definition of $E(\cdot)$.

We will prove (5.1) after giving the inductive construction of g_f in (5.2). The g_f which we construct will not vary continuously with f; in fact, note that if we could find the g_f that varied continuously with f, then (5.1) would produce the desired homotopy of \mathcal{F}_i [\mathcal{F}_i^*].

In order to construct g_f we make use of the constants d, b, c, and the orderings <, o of §4. Recall $m(i) \equiv \min\{o(i), o(i-1)\}$ and $M(i) \equiv \max\{o(i), o(i-1)\}$, and let $r \equiv o^{-1}$: $\{0, 1, \dots, k-1\} \rightarrow \{0, 1, \dots, k-1\}$. We define g_f inductively, one segment at a time. In the case that $\pi_x f(j+1) > j+1$ $[\pi_y f(j+1) > 0]$, we define g_f first on [r(0), r(0) + 1] and then on [r(1), r(1) + 1] and so on in order until [r(k-1), r(k-1) + 1]. In the case that $\pi_x f(j+1) < j+1$ $[\pi_y f(j+1) < 0]$, we define g_f on the segments in the reverse order. We shall describe in detail only the first case; the changes necessary for the second case should be clear to the reader.

(5.2)_s LEMMA. In the case that $\pi_x f(j+1) > j+1$ [$\pi_y (j+1) > 0$], the function g_f can be defined on

$$Cs \equiv \bigcup_{i=0}^{s-1} \left[r(i), r(i) + 1 \right]$$

so that the following hold:

- (a) $_s$ g_f is linear on each interval $[i, i+1] \in Cs$, $\pi_y g_f(p) = \pi_y f(p)$ $[\pi_x g_f(p) = \pi_x f(p)]$, and, for $0 \le i \le j$, $g_f(i) = (i, 0)$ and $g_f(k+1) = (k+1, 0)$, whenever defined.
 - (b), There is a finite subset

$$Ts \equiv \left\{ g_f(i) | M(i) \geqslant s \right\} \cup \left\{ p_1, p_2 \right\} \subset I^2,$$

where $p_1 = (b^{2k}d, \operatorname{sign}(\pi_y f(j+1))1)$ $[= (0, -1 + b^{2k}d)]$ and $p_2 = (b^{2k}d, 0)$ $[= (k, -1 + b^{2k}d)]$ if $s \leq o(0)$, and $p_1 = (j+1+b^{2k}d, -)$ $[= (0, b^{2k}d)]$ and $p_2 = (j+1+b^{2k}d, 1)$ $[= (k, b^{2k}d)]$ if s > o(0). For $p \in Ts$, define M(p) = M(i) if $p = g_f(i)$, and $M(p_1) = M(p_2) = o(0)$ if $s \leq o(0)$, and $M(p_1) = M(p_2) = k$ if s > o(0). We order Ts by the order on $\pi_y Ts$ $[\pi_x Ts]$. Except for p_1, p_2, Ts is just those vertices of $g_f(Cs)$ which are endpoints of only one simplex in $g_f(Cs)$.

(c)_s Let q, q' be in Ts. If, for every r between q and q' in Ts, M(r) < M(q) and M(r) < M(q') and if [q, q'] is not contained in Cs, then, for all $0 < \tau < 1$, either (i) $p \equiv \tau \cdot q + (1 - \tau) \cdot q'$ is at least as far horizontally [vertically] as

$$\begin{split} D(q,q';\tau;s) &\equiv \left(\tau b^{2M(q)} + (1-\tau)b^{2M(q')}\right)d(b^{-1} - sb^{-2}) \\ &= \tau \left(b^{2M(q)-1} - sb^{2M(q)-2}\right)d + (1-\tau)\left(b^{2M(q)-1} - sb^{2M(q)-2}\right)d \end{split}$$

from any point within d of Cs or (ii) $\pi_y p$ [$\pi_x p$] is within c of $\pi_y q$ (or $\pi_y q'$) [π_x] and p is closer horizontally [vertically] than $D(q, q'; \tau; s)$ to the g_f -image of some interval containing q (or q'), where $M(p) \equiv \tau \cdot M(q) + (1 - \tau) \cdot M(q)$ (see Figure 5.1).

- (d)_s Let $q \in Ts$. If M(q) < o(0) and $p \in Jq$ with $\pi_y p = \pi_y f(j+1) [\pi_x]$, then $(j+1) \pi_x p [0 \pi_y p] \ge b^{2k}d$. If M(q) > o(0) and $q \in Ts$, then (c) holds for $q' \equiv (j+1+b^{2k}d, \pm 1) [\equiv (0, b^{2k}d) \text{ or } (k, b^{2k}d)]$ with $M(q') \equiv k$.
- (e)_s If $m(i) \le o(0) \le M(i)$, then $j + 1 \le \pi_x g_f(i) \le j + 1 + b^{2k} d$ $[0 \le \pi_y g_f(i) \le b^{2k} d]$.

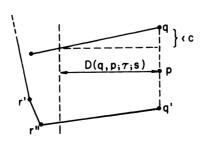


FIGURE 5.1

PROOF THAT $(5.2)_s$ IMPLIES $(5.2)_{s+1}$. We add [r(s), r(s) + 1] to Cs and have three cases depending on whether both, neither, or only one of r(s), r(s) + 1 are in Cs.

Both r(s) and r(s)+1 are in Cs. In this case $q=q_f(r(s))$ and $q'=g_f(r(s)+1)$ are in Ts. If $\pi_y g_f(i)$ is between $\pi_y q$ [$\pi_x q$] and $\pi_y q'$ [$\pi_x q'$], then M(i) < s = M(s) and therefore $q_f(i) \notin Ts$. Thus q and q' are adjacent (in the π_y [π_x]-induced order on Ts) and, by (c)_s, we can extend g_f linearly on [r(s), r(s)+1] and it will still be one-to-one and will satisfy (a)_{s+1}. The two points on either side of q and q' in Ts are now adjacent in Ts+1. The other parts of $(5.2)_{s+1}$ now follow if you note that, for each $q \in Ts$, s < M(q) and thus that $b^{2s} \le b^{2M(q)-2}$ (see Figure 5.2).

Only one of r(s) and r(s) + 1 are in Cs. Say r(s) is not in Cs and r(s) + 1 is in Cs (and $q = g_f(r(s) + 1) \in Ts$). By the same argument as above, no $r \in Ts$ can be between q and $l = \pi_y^{-1}\pi_y(r(s))$ [= $\pi_s^{-1}\pi_x(r(s))$] in the ordering induced by π_y [π_x]. Thus l must be between q and some $p \in Ts$ which is adjacent to q in Ts. Note that M(q) = s and so all other $p \in Ts$ have larger M and thus will be in Ts + 1. Let q_1 and q_2 be the first points in Ts on each side of l such that $M(q_1)$, $M(q_2) > M(r(s))$, if there are any such. If on a side of l there is no such point q_1 , then note that $M(r(s)) \ge M(p_i) \equiv o(0)$ and set

$$q_1 = (j+1+b^{2k}d, \pm 1) \quad \left[= (0, b^{2k}d) \text{ or } (k, b^{2k}d) \right].$$
If $\pi_y l = \tau \pi_y q_1 + (1-\tau)\pi_y q_2 \left[\pi_x \right]$, then set $q'' \equiv \tau q_1 + (1-\tau)q_2$ and define
$$\pi_y g_t(r(s)) = \pi_y q'' - D(q_1, q_2; \tau; s) + b^{2M(r(s))}d \quad \left[\pi_y \right]$$

Now define $q' \equiv g_f(r(s))$ and thus M(q') = M(r(s)). Extend linearly to [r(s), r(s) + 1] (see Figure 5.3).

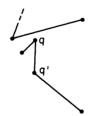


FIGURE 5.2

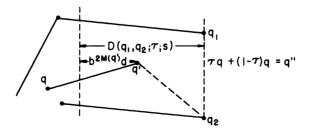


FIGURE 5.3

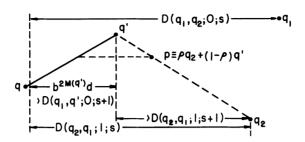


FIGURE 5.4

If $(c)_s(ii)$ holds for $q_1, q_2; \tau$, then by (4.6) we conclude $M(q') \le m(q_1)$ {or $M(q') \le m(q_2)$ } which is impossible; thus we conclude that q'' is at least as far horizontally [vertically] from Cs as $D(q_1, q_2; \tau; s)$. Thus q' misses Cs and (see Figure 5.3)

$$\begin{aligned} \|q' - q''\| &= D(q_1, q_2; \tau; s) - b^{2M(q')} d \\ &= \left\{ \tau b^{2M(q_1)} + (1 - \tau) b^{2M(q_2)} \right\} (b^{-1} - sb^{-2}) d - b^{2M(q')} d \\ &> D(q_1, q_2; \tau; s + 1), \end{aligned}$$

since $M(q') \leq M(q_i) - 1$.

We must now check $(c)_{s+1}$. Let $q = \alpha q_1 + (1-\alpha)q_2$ be such that $\pi_y(q) = \pi_y(q)$. Then, by $(c)_s$, $||q-q|| > D(q_1,q_2;\alpha;s)$. Thus, for $\beta q' + (1-\beta)q \in g_f[r(s),r(s)+1]$, we have

$$\|\beta q' + (1 - \beta)q - (\beta q'' + (1 - \beta)q^{\sim})\| = \beta \|q' - q''\| + (1 - \beta)\|q - q^{\sim}\|$$

$$\geqslant \beta D(q_1, q_2; \tau; s + 1) + (1 - \beta)D(q_1, q_2; \alpha; s + 1)$$

$$\geqslant D(q_1, q_2; \beta \tau + \alpha - \beta \alpha; s + 1).$$

For $\lambda \in [0,1] - [\alpha, \tau]$, the horizontally [vertically] closest point to $\lambda q_1 + (1-\lambda)q_2$ is in Cs. Thus (c)_{s+1} holds for q_1, q_2 .

All other cases of (c)_{s+1} follow from (c)_s except for q', q^* , where $\pi_y q^*$ is between or equal to $\pi_y q_1$ and $\pi_y q_2$. (Possibly q^* is q_1 or q_2 .) We first set $q^* = q_2$ and look at $p = \rho q' + (1 - \rho)q_2$, $0 \le \rho \le 1$ (see Figure 5.4). If the horizontal [vertical] distance from p to [q, q'] is less than $D(q', q_2; \rho; s + 1)$, then, using similar triangles,

$$\|\pi_{y}p - \pi_{y}q'\| < \{D(q_{2}, q'; \rho; s+1) - \rho D(q_{2}, q'; 1; s+1)\} \cdot \frac{\|\pi_{y}q - \pi_{y}q'\|}{b^{2M(q')}d}$$

$$< (1 - \rho)b^{2M(q')}d(b^{-1} - (s+1)b^{-2})\frac{k}{b^{2M(q')}d} < \frac{k}{b} < \frac{c}{2}$$

(see Figure 5.4). It is also clear from Figure 5.4 that, if $\pi_y p$ is farther than c from $\pi_y q'$, then p is at least as far horizontally [vertically] as $D(q_2, q'; \rho; s+1)$ from any point which is within d of Cs+1.

If remains now to look at $(c)_{s+1}$ with q' and $q^* \neq q_1, q_2$. Suppose that $\pi_y q^*$ is between $\pi_y q'$ and $\pi_y q_2$ and let q^{\wedge} be the first point in Ts on the other side of q' from q^* such that $M(q^{\wedge}) > M(q^*)$. Notice that q^*, q^{\wedge} satisfy the hypotheses of

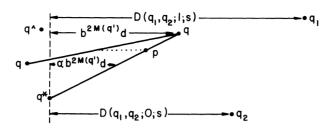


FIGURE 5.5

(c)_s. If $q^{\wedge} = q_1$, then an argument the same as that for q', q_2 will show that (c)_{s+1} is satisfied for q', q^* . If $q^{\wedge} \neq q_1$, then the situation is as in Figure 5.5. Note that by Lemma (4.6), $\|\pi_v q - \pi_v q^*\| > c$ and thus that

$$\alpha \equiv \frac{\|\pi_{y}q - \pi_{y}q^*\|}{\|\pi_{y}q' - \pi_{y}q^*\|} > \frac{c}{k}.$$

If $p = \beta q^* + (1 - \beta)q'$ is horizontally [vertically] within $D(q^*, q'; \beta; s + 1)$, then (since $M(q^*) < M(q')$)

$$\|\pi_{y}q' - \pi_{y}p\| \leq D(q^{*}, q'; \beta; s + 1) \cdot \frac{\|\pi_{y}q - \pi'_{q}\|}{\alpha b^{2M(q')}d}$$

$$< \{\beta b^{2M(q^{*}) - 2M(q')} + (1 - \beta)\} \cdot \frac{k}{b} \cdot \frac{k}{c} < \frac{k^{2}}{bc} = \frac{c}{2}.$$

An examination of Figure 5.5 shows that (c)_{s+1} holds for q', q^* .

Note that $(d)_{s+1}$ holds if M(q') < o(0) because then q' is further from $g_f(j+1)$ than the line joining q_1 and q_2 , and neither q_1 nor q_2 is $(j+1+b^{2k}d,\pm 1)$ $[(0,b^{2k}d)$ or $(k,b^{2k}d)]$. If M(q')>o(0) and there is a $w\in Ts$ on the side of $\pi_y^{-1}\pi_y f(j+1)$ $[\pi_x]$ with $M(w)\geqslant o(0)$, then $\pi_y[q,q']$ $[\pi_x[q,q']]$ does not contain $\pi_y f(j+1)$ $[\pi_x]$. If M(q')>o(0) and there is a $w\in Ts$, $M(w)\geqslant o(0)$, only on the side of q' away from $\pi_y^{-1}\pi_y f((\sec j+1)[\pi_x])$, then $w,p_2,p=[w,p_2]\cap\pi_y^{-1}\pi_y f(j+1)[\pi_x]$ satisfy $(c)_s$ and $(d)_s$ and, since [q,q'] must cross $[w,p_2]$, we see that $[q',p_2]$ must miss Cs+1 and have slope at least $j[1-b^{2k}d]$; but $|\pi_y f(j+1)-\pi_y q'|\geqslant c$ $[\pi_x]$, and thus

$$j + 1 - \pi_x \{ [q, q'] \cap \pi_y^{-1} \pi_y f(j+1) \} \ge cj \ge b^{2k} d$$

$$\left[0 - \pi_y \{ [q, q'] \cap \pi_x^{-1} \pi_x f(j+1) \} \ge c(1 - b^{2k} d) \ge b^{2k} d \right]$$

(see (4.2) and Figure 5.6). If there is no $w \in Ts$, $M(w) \ge o(0)$, then $\pi_x g_f(Cs) < b^{2o(0)}$ $[\pi_y]$ and thus $[q, p_2]$ is as in the last sentence and we conclude that $(c)_{s+1}$ and $(d)_{s+1}$ hold.

Neither r(s) nor r(s) + 1 are in Cs. The proof of this case is essentially the same as the previous case, except that we must pick two pairs of q_1, q_2 , one for each of r(s) and r(s) + 1. \square

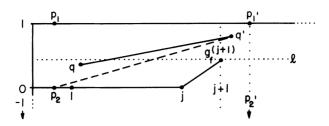


FIGURE 5.6

PROOF OF (5.1). The order < on the segments P_r (see (4.3)) ensures that if $B(f(i), P_r) \neq 0$, then f(i) and P_r stay in the same order as $g_f(i)$ and $g_f([r, r+1])$. Since the homotopy is horizontal [vertical] and $D(g_f(i), g_f([r, r+1])) > d$, it follows that $B(sf + (1-s)g_f)$ must decrease. (5.1) now follows.

PROOF OF (2.3). Let $\mu \equiv g_f - f \subset (\mathbb{R}^2)^{k-1}$. Then from (5.1) we see that $\mu \cdot \nabla_y B(f) \leq 0$ $[\nabla_x]$ and $\mu \cdot \nabla_y S(f) < 0$ $[\nabla_x]$. Thus, $\mu \cdot \nabla_y E(f) < 0$ $[\nabla_x]$ and we conclude that $\nabla_y E(f) \neq 0$ $[\nabla_x]$. \square

6. Comments on 3-dimensional conjecture. Let A be a straight unknotted spanning arc of I^3 which has a fixed subdivision. Let \mathcal{T}^3 be the space of simplexwise linear unknotted imbeddings of A into I^3 , rel ∂I^3 . It has been thought (see [Hat1]) that a proof that \mathcal{T}^3 is contractible is not feasible since there seems to be no way to use the hypothesis of unknottedness in a canonical way. However, it might be possible to define energy functions on \mathcal{T}^3 and attempt to flow along the gradient vector field in a manner similar to that above in the 2-dimensional case. The unknotted hypothesis would come in when one attempted to prove the analogue of Lemma (2.3), but in this case one would only be looking at a single $f \in \mathcal{T}^3$ and one could assume that the image of f bounds a disk in f and not need to pick the disc canonically. This is analogous to the situation in §5 where the g_f did not depend continuously on f.

REFERENCES

[BCH] E. Bloch, R. Connelly and D. Henderson, *The space of simplexwise linear homeomorphisms of a convex 2-disk*, Topology **23** (1984), 161–175.

[CHHS] R. Connelly, D. Henderson, C.-w. Ho and M. Starbird, On the problems related to linear homeomorphisms, embeddings, and isotopies, Continua, Decompositions, Manifolds, Univ. of Texas Press, Austin, Texas, 1983, pp. 229–239.

[Hat1] A. Hatcher, Linearization in 3-dimensional topology, Proc. I.C.M. (Helsinki, 1978), Acad. Sci. Fenn., Helsinki, 1980, pp. 463-468.

[Hat2] _____, A proof of the Smale Conjecture, Ann. of Math. 117 (1983), 553-607.

[Hen] D. Henderson, Relations between spaces of simplexwise linear and smooth embeddings, Preprint.

[Spi] M. Spivak, A comprehensive introduction to differential geometry, Vol. 1, Publish or Perish, Wilmington, Del., 1979.

DEPARTMENT OF MATHEMATICS, CORNELL UNIVERSITY, ITHACA, NEW YORK 14853